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Task-Driven Dictionary Learning for Hyperspectral
Image Classification with Structured Sparsity

Constraints
Xiaoxia Sun, Nasser M. Nasrabadi, Fellow, IEEE, and Trac D. Tran, Fellow, IEEE

Abstract—Sparse representation models a signal as a linear
combination of a small number of dictionary atoms. As a gener-
ative model, it requires the dictionary to be highly redundant
in order to ensure both a stable high sparsity level and a
low reconstruction error for the signal. However, in practice,
this requirement is usually impaired by the lack of labelled
training samples. Fortunately, previous research has shown that
the requirement for a redundant dictionary can be less rigorous
if simultaneous sparse approximation is employed, which can be
carried out by enforcing various structured sparsity constraints
on the sparse codes of the neighboring pixels. In addition,
numerous works have shown that applying a variety of dictionary
learning methods for the sparse representation model can also im-
prove the classification performance. In this paper, we highlight
the task-driven dictionary learning algorithm, which is a general
framework for the supervised dictionary learning method. We
propose to enforce structured sparsity priors on the task-driven
dictionary learning method in order to improve the performance
of the hyperspectral classification. Our approach is able to
benefit from both the advantages of the simultaneous sparse
representation and those of the supervised dictionary learning.
We enforce two different structured sparsity priors, the joint
and Laplacian sparsity, on the task-driven dictionary learning
method and provide the details of the corresponding optimization
algorithms. Experiments on numerous popular hyperspectral
images demonstrate that the classification performance of our
approach is superior to sparse representation classifier with
structured priors or the task-driven dictionary learning method.

Index Terms—Sparse representation, supervised dictionary
learning, task-driven dictionary learning, joint sparsity, Lapla-
cian sparsity, hyperspectral imagery classification

I. INTRODUCTION

CLASSIFICATION on Hyperspectral Imagery (HSI) is
becoming increasingly popular in remote sensing. No-

table applications include military aerial surveillance [1]–
[3], mineral identification and material defects detection [4].
However, numerous difficulties impede the improvement of
HSI classification performance. For instance, the high dimen-
sionality of HSI pixels introduce the problem of the ‘curse
of dimensionality’ [5], and the classifier is always confronted
with the overfitting problem due to the small number of

X.Sun and T. D. Tran are with the Department of Electrical and Computer
Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA (e-
mail: xsun9@jhu.edu; trac@jhu.edu). This work has been partially supported
by NSF under Grants CCF-1117545, ARO under Grants 60219-MA, and ONR
under grant N000141210765.

N. M. Nasrabadi is with U.S. Army Research Laboratory, Adelphi, MD
20783 USA (e-mail: nnasraba@arl.army.mil).

labelled samples. Additionally, most HSI pixels are indiscrim-
inative since they are undesirably highly coherent [6]. In the
past few decades, numerous classification techniques, such as
SVM [7], k-nearest-neighbor classifier [8], multimodel logistic
regression [9] and neural network [10], have been proposed
to alleviate some of these problems to achieve an acceptable
performance for HSI classification.

A. Sparse Representation for HSI classification

More recently, researchers have focused attention on de-
scribing the high dimensional data as a sparse linear com-
bination of dictionary atoms. Sparse representation classifier
(SRC) was proposed in [11] and has been successfully applied
to a wide variety of applications, such as face recognition [11],
visual tracking [12], speech recognition [13] and aerial image
detection [14]. SRC has also been applied to HSI classification
by Chen et. al. [15], where a dictionary was constructed by
stacking all the labelled samples. Success of SRC requires that
the high dimensional data belonging to the same class to lie
in a low dimensional subspace. The outstanding classification
performance is due to the robustness of sparse recovery, which
is largely provided by the high redundancy and low coherency
of the dictionary atoms. A low reconstruction error and a
high sparsity level can be achieved if the designed dictionary
satisfies the above properties. Unfortunately, in practice, the
HSI dictionary usually does not have the above properties due
to the small number of bluehighly correlated labelled training
samples [6].

Due to these undesired properties of the HSI dictionary, the
sparse recovery can become unstable and unpredictable such
that even pixels belonging to the same class can have totally
different sparse codes. The problem induced by the high-
coherency of the dictionary atoms, which can be alleviated
through decreasing the variation between the sparse codes
of the hyperspectral pixels that belong to the same class.
In HSI, pixels that are spatially close to each other usually
have similar spectral features and belong to the same class.
Previous research has shown that the sparse codes of neigh-
boring pixels can become similar by enforcing a structured
sparsity constraint (prior). The simultaneous sparse recovery
is analytically guaranteed to achieve a sparser solution and
a lower reconstruction error with a smaller dictionary [16].
A variety of structured sparsity priors are proposed in the
literature [17] that are capable of generating different desired
sparsity patterns for the sparse codes of neighboring pixels.
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The joint sparsity prior [15] assumes that the features of all the
neighboring pixels lie in the same low dimensional subspace
and all the corresponding sparse codes share the same set
of dictionary atoms. Therefore, the sparse codes have a row
sparsity pattern, where only a few rows of the sparse codes are
nonzero [18], [19]. The collaborative group sparsity prior [20]
enforces the coefficients to have a group-wise sparsity pattern,
where the coefficients within each active group are dense.
The collaborative hierarchical sparsity prior [21] enforces the
sparse codes to be not only group-wise sparse, but also sparse
within each active group. The low rank prior [22] assumes
that the neighboring pixels are linearly dependent. It does
not necessary lead the coefficients to be sparse, which is
detrimental for a good classification. However, the low rank
group prior proposed in [17] is able to enforce both a group
sparsity prior and a low rank prior on the sparse codes by
forcing the same group of dictionary atoms to be active if
and only if the corresponding neighboring pixels are linearly
dependent. The Laplacian sparsity prior [23] uses a Laplacian
matrix to describe the degree of similarity between the neigh-
boring pixels. The neighboring pixels that have less spectral
features in common are less encouraged to have a similar
sparse codes. It has been shown that all the structured sparsity
priors are capable of obtaining a smoother classification map
and improving the classification performance [17].

B. Dictionary Learning for Sparse Representation

In the classical SRC, the dictionary is constructed by
stacking all the training samples. The sparse recovery can be
computationally burdensome when the training set is large.
Besides, the dictionary constructed in this manner can neither
be optimal for reconstruction purposes nor for classification
of signals. Previous literature have shown that a dictionary
can be trained to have a better representation of the dataset.
Unsupervised dictionary learning methods, such as the method
of optimal direction (MOD) [24], K-SVD [25] and online dic-
tionary learning [26], are able to improve the signal restoration
performance of numerous applications, such as compressive
sensing, signal denoising and image inpainting.

However, the unsupervised dictionary learning method is
not suitable for solving classification problems since a lower
reconstruction error does not necessarily lead to a better classi-
fication performance. In fact, it is observed that the dictionary
can have an improved classification result by sacrificing some
signal reconstruction performance [27]. Therefore, supervised
dictionary learning methods [28] are proposed to improve
the classification result. Unlike the unsupervised dictionary
learning, which only trains the dictionary by pursuing a
lower signal reconstruction error, the supervised learning is
able to directly improve the classification performance by
optimizing both the dictionary and classifier’s parameter si-
multaneously. The discriminative dictionary learning in [29]
minimizes the classification error of SRC by minimizing the
reconstruction error contributed by the atoms from the correct
class and maximizing the error from the remaining classes.
The incoherent dictionary learning in [30] uses SRC as the
classifier and tries to eliminate the atoms shared by pixels

from different classes. It increases the discriminability of the
sparse codes by decreasing the coherency of the atoms from
different classes. The label consistent K-SVD (LC-KSVD)
[31] optimizes the dictionary and classifier’s parameter by
minimizing the summation of reconstruction and classification
errors. It combines the dictionary and classifier’s parameter
into a single parameter space, which makes it possible for the
optimization procedure to be much simpler than those used in
classical SRC. However, a desired and accurate solution is not
guaranteed [32] because the cost function can be minimized
by decreasing the reconstruction error while the classification
error is increased. A bilevel optimization formulation would
be more appropriate [33], where the update of the dictionary is
driven by the minimization of the classification error. The task-
driven dictionary learning (TDDL) [27] exploits this idea with
theoretical proof and demonstrates a superior performance.
The supervised translation-invariant sparse coding, which uses
the same scheme as TDDL, is developed independently by
[34]. It is a more general framework that can be applied not
only to classification, but also nonlinear image mapping, digi-
tal art authentication and compressive sensing. More recently,
the group sparsity prior is enforced on a single measurement
and the corresponding TDDL optimization algorithm is devel-
oped in [35] in order to improve the performance of region
tagging.

C. Contributions

In this paper, we propose a novel method that enforces
the joint or Laplacian sparsity prior on the sparse recovery
stage of TDDL. The existing dictionary learning methods
have only been developed for reconstructing or classifying a
single measurement. Therefore, it is advantageous to incorpo-
rate structured sparsity priors into the supervised dictionary
learning in order to achieve a better performance. This paper
makes the following contributions:

• We propose a new dictionary learning algorithm for
TDDL with joint or Laplacian sparsity in order to ex-
ploit the spatial-spectral information of HSI neighboring
pixels.

• We show experimentally that the proposed dictionary
learning methods have a significantly better performance
than SRC even when the dictionary is highly compact.

• We also describe an optimization algorithm for solving
the Laplacian sparsity recovery problem. The proposed
optimization method is much faster than the modified
feature sign search used in [23].

The remainder of the paper is organized as follows. In
Section II, a brief review of TDDL is given. In Section III,
we propose a modified TDDL algorithm with the joint sparsity
prior. TDDL with the Laplacian prior and a new algorithm for
recovering the Laplacian sparse problem are stated in Section
IV. In Section V, we show that our method is superior to
other HSI classification methods through experimental results
on several HSI images. Finally, we provide our conclusion in
Section VI.
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II. TASK-DRIVEN DICTIONARY LEARNING

In TDDL [27], signals are represented by their sparse
codes, which are then fed into a linear regression or logistic
regression. Consider a pair of training samples (x,y), where
x ∈ RM is the HSI pixel, M is the number of spectral bands,
and y ∈ RK is a binary vector representation of the label of
the sample x. K is the maximum class index. Pixel x can be
represented by a sparse coefficient vector α(D,x) ∈ RN with
respect to some dictionary D ∈ RM×N consisting of N atoms
by solving the optimization

α(D,x) = arg min
z
‖x−Dz‖22 + λ‖z‖1 +

ε

2
‖z‖22, (1)

,where λ and ε are the regularization parameters. λ controls
the sparsity level of the coefficients α. In our experiments,
we set ε to 0 since it does not affect the convergence of the
algorithm and always gives satisfactory results.

To optimize the dictionary, TDDL first defines a convex
function L(D,W, {xi}Si=1) to describe the classification risk
in terms of the dictionary atoms, sparse coefficients and the
classifier’s parameter W. The function is then minimized as
follows

min
D,W

L(D,W, {xi}Si=1) = min
D,W

f(D,W, {xi}Si=1)+
µ

2
‖W‖2F ,

(2)
where µ > 0 is a classifier regularization parameter to avoid
overfitting of the classifier [36]. The convex function f is
defined as

f(D,W, {xi}Si=1)
∆
=

1

S

S∑
i=1

J (yi,W,αi(D,xi)), (3)

where S is the total number of training samples and
L(yi,W,αi(D,xi)) is the classification error for a training
pair (xi,yi) which is measured by a linear regression, i.e.
J (yi,W,αi(D,xi)) = 1

2‖yi −Wαi‖22.
In the following part of the section, we omit the subscript

i of α for notational simplicity. The dictionary D and the
classifier parameter W are updated using a stochastic gradient
descent algorithm, which has been independently investigated
by [27], [34]. The update rules for D and W are{

D(t+1) = D(t) − ρ(t) · ∂L(t)/∂D,

W(t+1) = W(t) − ρ(t) · ∂L(t)/∂W,
(4)

where t is the iteration index and ρ is the step size. The
equations for updating the classifier parameter W is straight-
forward since L(y,W,α(D,x)) is both smooth and convex
with respect to W. We have

∂L
∂W

= (Wα− y)α> + µW. (5)

The updating equation for the dictionary can be obtained by
applying error backpropagation, where the chain rule is applied

∂L
∂D

=
∂L
∂α

∂α

∂D
. (6)

The difficulty of acquiring a specific form of the above equa-
tion comes from ∂α/∂D. Since the sparse coefficient α(D,x)
is an implicit function of D, an analytic form of α with respect

to D is not available. Fortunately, the derivative ∂α/∂D can still
be computed by either applying optimality condition of elastic
net [27], [37] or using fixed point differentiation [34], [38].

We now focus on computing the derivative using the fixed
point differentiation. As suggested in [38], the gradient of Eq.
(1) reaches 0 at the optimal point α̂

∂‖x−Dα‖22
∂α

∣∣∣
α=α̂

= −λ∂‖α‖1
∂α

∣∣∣
α=α̂

. (7)

Expanding Eq. (7), we have

2D>(x−Dα)
∣∣∣
α=α̂

= λ · sign(α)
∣∣∣
α=α̂

. (8)

In order to evaluate ∂α/∂D, the derivative of Eq. (8) with
respect to each element Dmn of the dictionary is required.
Since the differentiation of the sign function is not well
defined at zero points, we can only compute the derivative
of Eq. (8) at fixed points when α[n] 6= 0 [34]

∂αΛ

∂Dmn
= (D>ΛDΛ)−1

(
∂D>Λx

∂Dmn
− ∂D>ΛDΛ

∂Dmn
αΛ

)
and

∂αΛC

∂Dmn
= 0,

(9)

where Λ and Λc are the indices of the active and inactive
set of α respectively. Dmn ∈ R is the (m,n) element of D.
(D>ΛDΛ)−1 is always invertible since the number of active
atoms |Λ| is always much smaller than the feature dimension
M .

III. TDDL WITH JOINT SPARSITY PRIOR

We now extend TDDL by using a joint sparsity (JS) prior
(TDDL-JS). The joint sparsity prior [18], [19] enforces the
sparse coefficients of the test pixel and its neighboring pixels
within the neighborhood window to have row sparsity pattern,
where all pixels are represented by the same atoms in the
dictionary so that only few rows of the sparse coefficients
matrix are nonzero. The joint sparse recovery can be solved
by the following Lasso problem

A = arg min
Z
‖X−DZ‖2F + λ‖Z‖1,2, (10)

where A,Z ∈ RN×P are sparse coefficient matrices and
X = [x1, . . . ,xP ] ∈ RM×P represents all the pixels within a
neighborhood window centered on a test (center) pixel xc. De-
fine the label of the center pixel as yc. P is the total number of

pixels within the neighborhood window. ‖Z‖1,2 =
P∑
i=1

‖Zi‖2
is the `1,2-norm of Z. Zi ∈ R1×P is the ith row of Z. Many
sparse recovery techniques are able to solve Eq. (10), such as
the Alternating Direction Method of Multipliers [39], Sparse
Reconstruction by Separable Approximation (SpaRSA) [40]
and Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
[41].

Once the sparse code A is obtained, the sparse codes αc
of the center pixel xc is projected on each of the K decision
planes of the classifier. The plane with the largest projection
indicates the class that the center pixel xc belongs to,

identity(xc) = arg max
k

ŷk = arg max
k

(Wαc)k, (11)
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where αc ∈ RN is the sparse coefficients of the center pixel.
In the training stage, it is expected that the projection of the
decision plane corresponding to the class of the center pixel
should be increased while other planes should be orthogonal
to αc. Therefore, given the training data (X,yc), the classifi-
cation error for the center pixel xc is defined as

L(yc,W,αc(D,X)) = ‖yc −Wαc‖22 +
µ

2
‖W‖2F , (12)

In order to update the dictionary D, we need to apply a chain
rule similar to the one in Eq. (6):

∂L
∂D

=
∂L
∂A

∂A

∂D
. (13)

Now we focus on the difficult part ∂A∂D of Eq. (13). Employing
the fixed point differentiation on Eq. (10), we have

∂‖X−DA‖2F
∂A

∣∣∣
A=Â

= −λ∂‖A‖1,2
∂A

∣∣∣
A=Â

. (14)

In the following part of this section, we omit the fixed point
notation. Eq. (14) is only differentiable when ‖Ai‖2 6= 0,
where Ai denotes the ith row of A. At points where ‖Ai‖2 =

0, the derivative is not well defined, so we set ∂‖Ai‖2
∂Ai

= 0.
Denote Ã = AΛ ∈ RNΛ×P , where Λ is the active set such
that Λ = {i : ‖Ai‖2 6= 0, i ∈ {1, . . . , N}}, NΛ = |Λ|, AΛ is
composed of active rows of A, and D̃ is the active atoms of
D. Expanding the derivative of Eq. (14) on both sides on the
feasible points,

D̃>
(
X− D̃Ã

)
= λ

[
Ã>1
‖Ã1‖2

, . . . ,
Ã>NΛ

‖ÃNΛ
‖2

]>
. (15)

Computing the derivative of Eq. (15) with respect to Dmn

and transposing both sides

∂
{

(X−DA)
>

D̃
}

∂Dmn
= λ

[
Γ1

∂Ã>1
∂Dmn

, . . . ,ΓNΛ

∂Ã>NΛ

∂Dmn

]
,

(16)

where Γi = IP
‖Ãi‖2

− Ã>i Ãi

‖Ãi‖32
, i = 1, . . . , NΛ. By vectorizing

Eq. (16), we have

vec

(
∂X>D̃

∂Dmn
− Ã>

∂D̃>D̃

∂Dmn
− ∂Ã>

∂Dmn
D̃>D̃

)
= λ · Γvec

(
∂Ã>

∂Dmn

)
,

(17)

where Γ = Γ1 ⊕ · · · ⊕ ΓNΛ . From Eq. (17), we reach the
vectorization form of the derivative of Ã with respect to Dmn,
given as

vec

(
∂Ã>

∂Dmn

)
=
(
D̃>D̃⊗ IP + λΓ

)−1

vec

(
Ã>

∂D̃>D̃

∂Dmn
+
∂X>D̃

∂Dmn

)
.

(18)
Now we can update the dictionary element-wise using Eq.

(18). In order to reach a more concise form for updating
the dictionary, we perform algebraic transformations on Eq.
(13) and Eq. (18), which are illustrated in Appendix VII. We
illustrate the overall optimization for TDDL-JS in Algorithm
1. It should be noted that in the Algorithm 1, we define Â =
[0, . . . ,αc, . . . ,0] ∈ RN×P and Ŷ = [0, . . . ,y, . . . ,0] ∈
RK×P .

Algorithm 1 Stochastic gradient descent algorithm for task-
driven dictionary learning with joint sparsity prior

Require: Initial dictionary D and classifier W. Parameter λ,
ρ and t0.

1: for t = 1 to T do
2: Draw one sample (X,yc) from training set.
3: Find sparse sparse code A according to Eq. (10).
4: Find the active set Λ and define NΛ = |Λ|

Λ← {i : ‖Ai‖2 6= 0, i ∈ {1, . . . , N}},

where Ai is the ith row of A.
5: Compute Γ ∈ RNΛP×NΛP

Γ = Γ1 ⊕ · · · ⊕ ΓNΛ
,

Γi =
IP

‖Ãi‖2
− ÃiÃ

>
i

‖Ãi‖32
, i = 1, . . . , NΛ,

where ⊕ is the direct sum of matrices.
6: Compute γ ∈ RNΛP

γ = (D̃>D̃⊗ IP + λΓ)−>vec((WÂ− Ŷ)>W̃).

where vec(·) and W̃ denote the vectorization operator
and Λ columns of W respectively.

7: Let β ∈ RN×P . Set βΛC = 0 and construct βΛ ∈
RNΛ×P that satisfies

vec
(
β>Λ

)
= γ.

8: Choose the learning rate ρt ← min(ρ, ρ t0t ).
9: Update the parameters by gradient projection step

W←W − ρt
(
(Wαc − y)α>c + µW

)
,

D← D− ρt(−DβA> + (X−DA)β>),

and normalize every column of D(t+1) with respect to
`2-norm.

10: end for
11: return D and W.

IV. TDDL WITH LAPLACIAN SPARSITY PRIOR

The joint sparsity prior is a relatively stringent constraint on
the sparse codes since it assumes that all the neighboring pixels
have the same support as the center pixel. The assumption
of the joint sparsity prior can easily be violated on non-
homogeneous regions, such as a region that contains pixels
from different classes. This makes choosing a proper neighbor-
hood window size a difficult problem. When the window size
is too large, the sparse codes of the non-homogeneous regions
within the window are indiscriminative. On the other hand, the
sparse codes are not stable if the window size is chosen to be
too small. Ideally, we hope that the performance is insensitive
to both the choice of the window size and the topology of the
image. To achieve this requirement, we propose to enforce the
Laplacian sparsity (LP) prior (TDDL-LP) on the TDDL, where
the degree of similarity between neighboring pixels can be
utilized to push the sparse codes of the neighboring pixels that
belong to the same class to be similar, instead of enforcing all
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the neighboring pixels to have a similar sparse codes blindly.
The corresponding Lasso problem can be stated as follows

A = arg min
Z
‖X−DZ‖22 + λ‖Z‖1 + γ

P∑
i,j

cij‖Zi − Zj‖22,

(19)
where Zi and Zj denote the ith and jth columns of Z. cij is
a weight whose value is proportional to the spectral similarity
of Xi and Xj , which are the ith and jth columns of X. γ is a
regularization parameter.

The Laplacian sparse recovery described by Eq. (19) in
[23] is able to discriminate pixels from different classes by
defining an appropriate weighting matrix C = [cij ] ∈ RP×P .
Additionally, it enforces both the support and the magnitude
of sparse coefficients of similar spectral pixels to be similar,
whereas the joint sparsity prior enforces sparse coefficients of
all the pixels within the neighborhood window to have the
same support. Eq. (19) can be reformulated as

A = arg min
Z
‖X−DZ‖22 + λ‖Z‖1 + γtr(ZLZ>), (20)

where L = B − C ∈ RP×P is the Laplacian matrix [42].
B = [bij ] ∈ RP×P is a diagonal matrix such that bii =

∑
j

cij .

In this paper, we adopt the method of Sparse Reconstruction
by Separable Approximation (SpaRSA) [17], [40] to solve the
Laplacian sparse coding problem.

A. Sparse Recovery Algorithm

A modified feature sign search [23] is capable of solving
the optimization problem (20). It uses coordinate descent to
update each column of A iteratively. Although it gives plausi-
ble performance for the SRC-based HSI classification [17],
it demands a high computational cost. The SpaRSA-based
method can achieve a similar optimal solution of Eq. (20)
while being less computational burdensome. Despite the fact
that our previous work [17] has shown that the performance of
the SRC-based approach for HSI classification can be largely
influenced by the choice of specific optimization technique, we
found that such influence is reasonably small when employing
the dictionary-learning-based approach. Therefore, we use
a SpaRSA-based method to solve the sparse recovery for
the Laplacian sparsity prior. Although, SpaRSA is originally
designed to solve the optimization of single-signal case, it can
be easily extended to tackle the problem with multiple signals,
such as the collaborative hierarchical Lasso (C-Hilasso) [21].

SpaRSA is able to solve optimization problems that have
the following form

min
A∈RN×P

f (A) + λψ (A) , (21)

where f : RN×P → R is a convex and smooth function,
ψ : RN×P → R is a separable regularizer and λ is the
regularization parameter. In the particular case of the Laplacian
sparse recovery, the regularizer ψ is chosen to be the `1−norm,
i.e. ψ(A) = ‖A‖1, and the convex function f is set as

f (A) = ‖X−DA‖2F + γtr
(
ALA>

)
. (22)

Algorithm 2 Sparse recovery for Laplacian sparsity prior
using SpaRSA

Require: Dictionary D, constants η0 > 0, 0 < ηmin < ηmax,
µ > 1

1: Set t = 0 and A(0) = 0
2: repeat
3: choose η(t) ∈ [ηmin, ηmax]
4: compute U(t) ← A(t) − 1

η(t)∇f(A(t)).
5: repeat
6: A(t) ← S γ

η(t)

(
U(t)

)
,

7: η(t) ← µη(t).
8: until stopping criterion is satisfied
9: t← t+ 1.

10: until stopping criterion is satisfied
11: return The optimal sparse coefficients A∗.

In order to search the optimal solution of Eq. (21), SpaRSA
generates a sequence of iterations A(t), t = 1, 2, . . . , by
solving the following subproblem

A(t+1) ∈ arg min
Z∈RN×P

(
Z−A(t)

)>
∇f(A(t))+

η(t)

2
‖Z−A(t)‖2F+γψ (Z) ,

(23)
where η(t) > 0 is a nonnegative scalar such that η(t) =
µη(t−1) and µ > 1. The Eq. (23) can be simplified into the
following form by eliminating the terms independent of Z

min
Z∈RN×P

1

2
‖Z−U(t)‖2F +

γ

η(t)
ψ(Z), (24)

where U(t) = A(t)− 1
η(t)∇f(A(t)). The optimization problem

in Eq. (24) is separable element-wise, which can be reformu-
lated into

min
Aij

1

2
(zij−u(t)

ij )2+
λ

η(t)
ψij(Z),∀i = 1, . . . , N and j = 1, . . . , P.

(25)
The problem in Eq. (25) has a unique solution and can be
solved by the well-known soft thresholding operator S(·)

z∗ij = S γ

η(t)

(
u

(t)
ij

)
= sign(u

(t)
ij ) max{0, |uij | −

λ

η(t)
}. (26)

Comparing with the algorithm proposed in [23], which is
based on the coordinate descent, Laplacian sparse recovery
using SpaRSA is more computationally efficient since it is
able to cheaply search for a better descent direction ∇f(A).
The corresponding optimization is stated in Algorithm 2.

B. Dictionary Update

In order to adjust the dictionary, we now follow Eq. (13)
to derive ∂A

∂D using the fixed point differentiation. Applying
differentiation on Eq. (19) on the fixed point Â

∂‖X−DA‖2F + γtr
(
ALA>

)
∂A

∣∣∣
A=Â

= −λ∂‖A‖1
∂A

∣∣∣
A=Â

.

(27)
In the following part, we omit the fixed point notation. By
computing the derivation and then applying the vectorization
on Eq. (27), we have

vec
(
D> (X−DA)− γAL

)
= λ · vec (sign (A)) . (28)
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Algorithm 3 Stochastic gradient descent algorithm for task-
driven dictionary learning with Laplacian sparsity prior

Require: Initial dictionary D and classifier W. Parameter λ,
ρ and t0.

1: for t = 1 to T do
2: Draw one sample (X,yc) from training set.
3: Find sparse code A according to Eq. (10).
4: Find the active set Λ

Λ← {i : vec(A)i 6= 0, i ∈ {1, . . . , NP}},

where vec(A)i is the ith element of vec(A).
5: Let β ∈ RN×P . Set vec(β)ΛC = 0 and compute
vec(β)Λ

vec(β)Λ = (IP⊗D>D+γL⊗IN )−1
Λ,Λvec(W

>(WÂ−Ŷ))Λ,

and ⊗ denotes the Kronecker product.
6: Choose the learning rate ρt ← min(ρ, ρ t0t ).
7: Update the parameters by gradient projection step

W←W − ρt
(
(Wαc − y)α>c + µW

)
,

D← D− ρt(−DβA> + (X−DA)β>),

and normalize every column of D(t+1) with respect to
`2-norm.

8: end for
9: return D and W.

The differentiation ∂vec(sign(A))
∂Dmn

is not well defined on zero
points of vec (sign (A)). Similar as in TDDL-JS, we set the ith

element ∂vec(sign(A))i
∂Dmn

= 0 when vec (sign (A))i = 0. Denote
the Λ as the index set of nonzero elements of vec (sign (A)).
Compute the derivative of Eq. (28) with respect to Dmn

∂
{
vec

(
D> (X−DA)− γAL

)
Λ

}
∂Dmn

= 0, (29)

which leads to

vec

(
∂D>D

∂Dmn
A− ∂D>X

∂Dmn
+ D>D

∂A

∂Dmn
+ γ

∂A

∂Dmn
L

)
Λ

= 0.

(30)
Now we reach the desired gradient

vec

(
∂A

∂Dmn

)
Λ

=

(
IP ⊗D>D + γL⊗ IN

)−1

Λ,Λ
vec

(
∂D̃>D̃

∂Dmn
Ã +

∂D̃>X

∂Dmn

)
Λ

.

(31)

By applying algebraic simplification to Eq. (31), which is
shown in Appendix VII, we reach the optimzation for TDDL-
LP as stated in the Algorithm 3. It should be noted that Â
and Ŷ have the same definitions as those in Algorithm 1.

V. EXPERIMENTS

A. Experiment Setup

Cross-validation to obtain the optimal values for all pa-
rameters, including λ, ε, γ (sparse coding regularization pa-
rameters), µ (regularization parameter for the classifier), ρ0

(initial step size), N (dictionary size) and P (number of
neighboring pixels), would introduce significant computational
cost. Instead, we search for the optimal values for the above
parameters according to the following procedure.
• The candidate dictionary sizes are from 5 to 10 atoms

per class. The choice of dictionary size depends on the
classification performance and computational cost. In our
experiment, we set the dictionary size to be 5 atoms per
class.

• Searching for the optimal window size and the regulariza-
tion parameters would be cumbersome. Empirically, we
found that the optimal regularization parameters are less
likely to be affected by the choice of the window size.
Therefore, for each image, we fix the window size to be
3× 3 in order to save computational resource during the
search of the optimal regularization parameters. Candi-
date regularization parameters are

{
10−3, 10−2, 10−1

}
.

• The possible candidate window sizes are 3 × 3, 5 × 5,
7× 7 and 9× 9. We search for the optimal window size
for each image after finding the optimal regularization
parameters.

TABLE I: Parameters Used in the Paper
Structured Priors λ γ ρ

`1 10−2
H

HHH
10−2

JS 10−2
HHHH

10−3

LP 10−2 10−3 10−1

Computing the gradient for a single training sample at each
iteration of Algorithm 1 or 3 will make the algorithm converge
very slowly. Therefore, following the previous work [26], [27],
we implement the two proposed algorithms with the mini-
batch method, where the gradients of multiple training samples
are computed in each iteration. For the unsupervised learning
methods, the batch size is set to 200. For the supervised learn-
ing methods, the batch size is set to 100 and t0 = T/10. We
search the optimal regularization parameters for each image
and found that their optimal values are coincidentally the same.
The reason could be due to our choice of a large interval
for the search grid. The regularization parameters used in our
paper are shown in Table I. We set µ = 10−4. As a standard
procedure, we evaluate the classification performance on HSI
image using the overall accuracy (OA), average accuracy (AA)
and kappa coefficient (κ). The classification methods that are
tested and compared are SVM, SRC, SRC with joint sparsity
prior (SRC-JS), SRC with Laplacian sparsity prior (SRC-
LP), unsupervised dictionary learning (ODL), unsupervised
dictionary learning with joint or Laplacian sparsity prior
(ODL-JS, ODL-LP), TDDL, TDDL-JS and TDDL-LP. During
the testing stage, all training pixels are excluded from the HSI
image, which means there may be some ‘holes’ (training pixels
deleted) inside a neighborhood window. This is reasonable
since we do not want the classification results to be affected
by the spatial distribution of the labelled samples. We use
SPAMS toolbox [43] to perform the joint sparse recovery
via the Fast Iterative Shrinkage-Thresholding Algorithm [41].
The sparse recovery for SRC-based methods are performed
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via the Alternating Direction Method of Multipliers [39]. The
modified SpaRSA shown in Algorithm 2 is used to solve the
Laplacian sparse recovery problem.

For the unsupervised dictionary learning methods, the dic-
tionary is initialized by randomly choosing a subset of the
training pixels from each class and updated using the online
dictionary learning (ODL) procedure in [26]. The classifier’s
parameter are then obtained by using a multi-class linear
regression. For the supervised dictionary learning methods,
the dictionary and classifier’s parameter are initialized by the
training results of ODL for the unsupervised method.

(a) (b)
Fig. 1: (a) Training sets and (b) test sets of the Indian Pine
image.

TABLE II: Number of training and test samples for the Indian
Pine image

Class # Name Train Test
1 Alfalfa 6 48
2 Corn-notill 137 1297
3 Corn-min 80 754
4 Corn 23 211
5 Grass/Pasture 48 449
6 Grass/Trees 72 675
7 Grass/Pasture-mowed 3 23
8 Hay-windrowed 47 442
9 Oats 2 18

10 Soybeans-notill 93 875
11 Soybeans-min 235 2233
12 Soybean-clean 59 555
13 Wheat 21 191
14 Woods 124 1170
15 Building-Grass-Trees-Drives 37 343
16 Stone-steel Towers 10 85

Total 997 9369

Fig. 2: The result with different dictionary sizes for the Indian
Pine image.

Fig. 3: The effect of different window sizes for the Indian Pine
image. The dictionary size is fixed at five atoms per class.

B. Classification on AVIRIS Indian Pine Dataset

We first perform HSI classification on the Indian Pine im-
age, which is generated by Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS). Every pixel of the Indian Pine consists
of 220 bands ranging from 0.2 to 2.4µm, of which 20 water
absorption bands are removed before classification. The spatial
dimension of this image is 145 × 145. The image contains
16 ground-truth classes, most of which are crops, as shown
in Table II. We randomly choose 997 pixels (10.64% of all
the interested pixels) as the training set and the rest of the
interested pixels for testing.

The total iterations of unsupervised and supervised dictio-
nary learning methods are set to 15 and 200 respectively for
this image. The classification results with varying dictionary
size N are shown in Fig. 2. In most cases, the classification
performance increases with the increment in the dictionary
size. All methods attain their highest OA when the dictionary
size is 10 atoms per class. The OA of ODL-JS, ODL-LP,
TDDL-JS and TDDL-LP do not change much when the dic-
tionary size increase from 5 to 10 atoms per class. Therefore,
it is reasonable to set the dictionary size to be 5 atoms per
class by taking computational cost into account. Fig. 2 also
suggests that a plausible performance can be obtained even
when the dictionary is very small and not over-complete. The
classification performance with respect to the window size is
demonstrated in Fig. 3. Using a window size of 5×5, ODL-JS
and TDDL-JS achieves the highest OA of 88.36% and 92.65%,
respectively. When the window size is set to 7× 7, the ODL-
LP and TDDL-LP reach their highest OA = 91.39% and OA
= 94.20%, respectively. ODL-JS and TDDL-JS reach better
performance when the window size is not larger than 5×5. The
TDDL-LP outperforms all other methods when the window
size is 7 × 7 or larger. Since a larger window size has more
chances to include non-homogeneous regions, it verifies our
argument that the Laplacian sparsity prior works better for
classifying pixels lying in the non-homogeneous regions.

Detailed classification results of various methods are shown
in Table III and visually displayed in Fig. 4. The OA of
ODL-LP reaches 91.39%, which is more than 20% higher
than that of ODL and 3% higher than that of ODL-JS. The
TDDL-LP has the highest classification accuracy for most
classes. Most methods have 0% accuracy for class 9 since
there are too few training samples in this class. The overall
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(a) SVM, OA = 64.94% (b) SRC, OA = 71.17% (c) SRC-JS, OA = 76.41% (d) SRC-LP, OA = 79.40% (e) ODL, OA = 71.04%

(f) ODL-JS, OA = 88.36% (g) ODL-LP, OA = 91.39% (h) TDDL, OA = 81.43% (i) TDDL-JS, OA = 92.65% (j) TDDL-LP, OA = 94.20%

Fig. 4: Classification map of the Indian Pine image obtained by (a) SVM, (b) SRC, (c) SRC-JS, (d) SRC-LP, (e) ODL, (f)
ODL-JS, (g) ODL-LP, (h) TDDL, (i) TDDL-JS and (j) TDDL-LP.

TABLE III: Classification accuracy (%) for the Indian Pine image
Dictionary Size N = 997 N = 80
Class SVM SRC SRC-JS SRC-LP ODL ODL-JS ODL-LP TDDL TDDL-JS TDDL-LP

1 77.08 68.75 79.17 82.42 75.00 97.92 70.83 50.00 35.42 56.25
2 84.96 58.84 81.94 81.34 59.69 91.24 94.26 84.03 94.57 93.95
3 62.67 24.40 56.67 47.35 62.93 81.20 84.40 69.73 84.13 92.13
4 8.57 49.52 27.62 49.76 23.81 47.62 61.90 14.76 79.05 46.19
5 77.18 81.88 85.46 83.96 82.55 93.29 92.62 89.04 90.16 90.83
6 91.82 96.88 98.36 97.48 88.24 99.55 98.96 98.66 99.55 98.96
7 13.04 0.00 0.00 0.00 4.35 17.39 0.00 0.00 0.00 95.65
8 96.59 96.59 100.00 99.55 96.36 99.32 99.32 99.09 100.00 100.00
9 0.00 5.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 71.30 24.00 18.94 31.89 67.51 77.73 91.04 72.90 90.13 94.03
11 35.25 96.22 91.63 94.58 67.94 88.25 94.10 85.46 96.22 97.37
12 42.39 32.97 45.29 64.68 80.62 88.59 83.15 59.06 86.78 95.47
13 91.05 98.95 99.47 99.48 95.79 100.00 100.00 100.00 100.00 100.00
14 94.85 98.97 98.97 99.49 87.20 97.77 99.14 98.11 99.40 99.40
15 30.70 49.71 55.85 63.84 32.16 70.76 67.84 47.66 77.78 82.75
16 27.06 88.24 95.29 97.65 69.41 96.47 85.88 92.94 91.76 98.82

OA[%] 64.94 71.17 76.41 79.40 71.04 88.36 91.39 81.43 92.65 94.20
AA[%] 56.53 60.72 64.67 64.67 62.10 77.94 82.18 66.43 76.56 83.86
κ 0.647 0.695 0.737 0.712 0.691 0.851 0.907 0.8087 0.924 0.940

performance of TDDL-JS and TDDL-LP have at least 13%
improvement over the other conventional dictionary learning
techniques. TDDL-LP significantly outperforms other methods
on the classes that occupy small regions in the image. The class
7 (Grass/Pasture-mowed), lying in a non-homogeneous region,
has only 3 training samples and 23 test samples. The TDDL-
LP is capable of correctly classify 95.65% test samples while
the second highest accuracy is only 17.39%. We notice that
the AA of both ODL-LP (82.18%) and TDDL-LP (83.86%)
are at least 4% higher than that of the other methods. This
also suggests that the Laplacian-sparsity-enforced dictionary
learning methods work better on non-homogeneous regions,
since the AA can only attain high value when both the most
regions reach high accuracy.

C. Classification on ROSIS Pavia Urban Data Set

The last two images to be tested are the University of Pavia
and the Center of Pavia, which are urban images acquired by
the Reflective Optics System Imaging Spectrometer (ROSIS).
It generates 115 spectral bands ranging from 0.43 to 0.86µm.

The University of Pavia image contains 610 × 340 pixels.

(a) (b)
Fig. 5: (a) Training sets and (b) test sets of the University of
Pavia image.

12 noisiest bands out of all 115 bands are removed. There are
nine ground-truth classes of interests as shown in Table IV.
For this image, the training samples were manually labelled
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(a) SVM, OA = 69.84% (b) SRC, OA = 66.51% (c) SRC-JS, OA = 74.05% (d) SRC-LP, OA = 80.82% (e) ODL, OA = 64.57%

(f) ODL-JS, OA = 75.83% (g) ODL-LP, OA = 78.15% (h) TDDL, OA = 69.30% (i) TDDL-JS, OA = 84.48% (j) TDDL-LP, OA = 85.70%

Fig. 6: Classification map of the University of Pavia image obtained by (a) SVM, (b) SRC, (c) SRC-JS, (d) SRC-LP, (e)
ODL, (f) ODL-JS, (g) ODL-LP, (h) TDDL, (i) TDDL-JS and (j) TDDL-LP.

TABLE V: Classification accuracy (%) for the University of Pavia image
Dictionary Size N = 3921 N = 45
Class SVM SRC SRC-JS SRC-LP ODL ODL-JS ODL-LP TDDL TDDL-JS TDDL-LP

1 84.55 57.11 77.04 95.08 39.16 86.64 79.38 74.60 79.27 87.77
2 82.45 58.22 67.98 66.70 66.37 56.48 75.89 51.27 86.85 78.89
3 77.08 57.33 44.32 77.55 65.40 80.72 62.42 77.19 71.13 78.79
4 94.19 95.94 95.13 95.19 78.67 99.04 96.91 98.08 98.87 98.21
5 99.01 100.00 99.85 100.00 99.91 100.00 99.82 99.91 99.91 99.91
6 23.55 89.60 88.31 96.60 64.94 96.89 72.13 90.07 68.74 91.64
7 2.06 83.27 96.59 96.59 91.64 91.23 84.10 86.14 68.09 93.17
8 33.89 48.65 65.20 67.36 67.36 90.81 75.98 78.00 95.54 94.20
9 53.05 93.69 99.59 99.59 71.07 98.37 93.46 95.72 91.82 95.09

OA[%] 69.84 66.51 74.05 80.82 64.57 75.83 78.15 69.30 84.48 85.70
AA[%] 61.09 75.98 80.06 88.80 71.66 88.91 82.23 83.44 84.47 90.85
κ 0.569 0.628 0.681 0.758 0.549 0.731 0.747 0.662 0.817 0.835

by an analyst. The total number of training and testing
samples is 3, 921 (10.64% of all the interested pixels) and
40, 002 respectively. The training and testing map are visually
displayed in Fig. 5.

For the University of Pavia, we set the total iterations of
unsupervised and supervised dictionary learning methods to
be 30 and 200 respectively. The window size is set to 5 × 5
for all joint or Laplacian sparse regularized methods to obtain
the highest OA. The ODL-LP is able to reach a performance
of 78.15% for OA, which is more than 14% higher than that of
ODL. The ODL-JS also significantly improves the OA, which

is more than 11% higher than that of ODL. TDDL-LP has
the highest OA = 85.70%, which indicates that it outperforms
other methods when classify large regions of the image. It also
has the highest κ = 0.935. The best classification accuracy
for class 1 (Asphalt), which consists of narrow strips, is
obtained by using TDDL-LP (87.77%). Class 2 (Meadows)
is composed of large smooth regions, as expected, TDDL-
JS gives the highest accuracy (86.85%) for this class. TDDL
has large amount of misclassification pixels for class 2. The
highest AA (90.85%) is given by TDDL-LP, which confirms
that the TDDL-LP is superior to other methods when classify
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TABLE IV: Number of training and test samples for the
University of Pavia image

Class # Name Train Test
1 Asphalt 548 6304
2 Meadows 540 18146
3 Gravel 392 1815
4 Trees 524 2912
5 Metal sheets 265 1113
6 Bare soil 532 4572
7 Bitumen 375 981
8 Bricks 514 3364
9 Shadows 231 795

Total 3921 40002

(a) (b)
Fig. 7: (a) Training sets and (b) test sets of the Center of Pavia
image.

TABLE VI: Number of training and test samples for the Center
of Pavia image

Class # Name Train Test
1 Water 745 64533
2 Trees 785 5722
3 Meadows 797 2094
4 Bricks 485 1667
5 Soil 820 5729
6 Asphalt 678 6847
7 Bitumen 808 6479
8 Tile 223 2899
9 Shadows 195 1970

Total 5536 97940

the pixels in non-homogeneous regions.
The third image where we evaluate various approaches is

the Center of Pavia, which consists of 1094 × 492 pixels.
Each pixel has 102 bands after removing 13 noisy bands.
This image consists of nine ground-truth classes of interest
as shown in Table VI and Fig. 7. 5, 536 manually labelled
pixels are designated as the training samples and the remaining
97, 940 interested pixels are used for testing.

Since this image has more labeled samples than the other
two images, we set the total iterations of unsupervised and
supervised dictionary learning methods to be 75 and 1000
respectively. The window size is set to 5 × 5 for the joint
sparse and Laplacian sparse regularized methods. Although

the OA of most methods are close, the OA of ODL-JS and
ODL-LP are still around 3% higher than that of ODL. The
TDDL-LP reach the highest OA = 98.67% over all the other
methods. The OA of TDDL-JS (98.01%) is slightly lower
than that of the TDDL-LP. We notice that SRC-JS (OA =
98.01%) and SRC-LP (OA=98.36%) also render competitive
performance when compared to TDDL-JS and TDDL-LP due
to the fact that the raw spectral features of this image is already
highly discriminative. TDDL-LP outperforms other methods
on almost all classes and works especially well for Class
4 (Bricks), achieving highest accuracy of 97.41%. Except
for SRC-LP where the accuracy is 94.72%, none of others
reaches accuracy over 90% for Class 4. Additionally, the AA
of TDDL-LP (97.21%) is almost 2% better than that of TDDL-
JS (95.68%). These results support our assertion that the
Laplacian sparsity prior provides stronger discriminability on
nonhomogeneous regions. Performance comparison between
the SRC-based and TDDL-based methods have shown that
the dictionary size can be drastically decreased by applying
supervised dictionary learning while achieving even better
performance.

VI. CONCLUSION

In this paper, we proposed novel a task driven dictionary
learning method with joint or Laplacian sparsity prior for HSI
classification. The corresponding optimization algorithms are
developed using fixed point differentiation, and are further
simplified for ease of implementation. We also derived the
optimization algorithm for solving the Laplacian sparse recov-
ery problem using SpaRSA, which improves the computational
efficiency due to the availability of a more accurate descent
direction. The performance and the behavior of the proposed
methods, i.e. TDDL-JS and TDDL-LP, have been extensively
studied on the popular hyperspectral images. The results
confirm that both TDDL-JS and TDDL-LP give plausible
results on smooth homogeneous regions, while TDDL-LP one
works better for classifying small narrow regions. Compared
to TDDL-JS, TDDL-LP is able to obtain a more stable
performance by describing the similarities of neighboring
pixels’ sparse codes more delicately. The results also confirm
that a significantly better performance can still be achieved
when joint or Laplacian prior is imposed by using a very
small dictionary. The overall accuracy of our algorithm can be
improved by applying kernelization to the proposed approach.
This can be achieved by kernelizing the sparse representation
[44] and using a composite kernel classifier [45].

VII. APPENDIX A

We can infer from Eq. (18) that vec (∂A/∂Dmn) = 0, ∀n ∈
Λc, which indicates ∂L/∂Dmn = 0, ∀n ∈ Λc. Therefore,
we only need to take the gradient ∂L/∂Dmn, ∀n ∈ Λ into
account.

From the Eq. (13) and Eq. (18), we achieve the gradient for
every element of D̃,

∂L
∂D̃mn

= vec

(
∂L
∂Ã

)>
· vec

(
∂Ã

∂D̃mn

)
, (32)
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(a) SVM, OA = 95.68% (b) SRC, OA = 97.57% (c) SRC-JS, OA = 98.01% (d) SRC-LP, OA = 98.36% (e) ODL, OA = 93.67%

(f) ODL-JS, OA = 96.13% (g) ODL-LP, OA = 97.86% (h) TDDL, OA = 96.30% (i) TDDL-JS, OA = 98.01% (j) TDDL-LP, OA = 98.67%

Fig. 8: Classification map of the Center of Pavia image obtained by (a) SVM, (b) SRC, (c) SRC-JS, (d) SRC-LP, (e) ODL,
(f) ODL-JS, (g) ODL-LP, (h) TDDL, (i) TDDL-JS and (j) TDDL-LP.

where m = 1, . . . ,M and n = 1, . . . , NΛ. Let g =

vec
(

∂f

∂Ã>

)
= vec

((
WÂ− Ŷ

)>
W̃

)
and W̃ = WΛ is

the Λ columns of W. Expand Eq. (18) and combine it with
Eq. (32), we have

∂L
∂D̃mn

= Umn − Vmn and
∂L
∂D̃

= U−V, (33)

where U,V ∈ Rm×NΛ and every element Umn, Vmn are
defined as

Umn = g>
(
D̃>D̃⊗ IP + λΓ

)−1

vec
(

(X−DA)
>

Ẽmn

)
,

Vmn = g>
(
D̃>D̃⊗ IP + λΓ

)−1

vec
(
Ã>Ẽ>mnD̃

)
,

where Ẽmn ∈ RM×NΛ is the indicator matrix that element
(m,n) of Ẽmn is 1 and all other elements are zero.

Consider the simplification for U first

Umn = g>
(
D̃>D̃⊗ IP + λΓ

)−1 (
Ẽ>mn ⊗ IP

)
vec

(
(X−DA)

>
)

= g>Fñvec
(

(X−DA)
>
)
m̃
, (34)

where F =
(
D̃>D̃⊗ IP + λΓ

)−1

; m̃(m) = {(m − 1)P +

1, . . . ,mP}, ñ(n) = {(n−1)P+1, . . . , nP} denote the index
sets; Fñ are the ñ columns of F.

Let ξm = vec
(

(X−DA)
>
)
m̃

. It can be shown that ξ>m
is the mth row of (X −DA). Now the (m,n) element Umn
of the first part U can be written as

Umn =
(
g>F

)ñ
ξm, (35)
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TABLE VII: Classification accuracy (%) for the Center of Pavia image
Dictionary Size N = 5536 N = 45
Class SVM SRC SRC-JS SRC-LP ODL ODL-JS ODL-LP TDDL TDDL-JS TDDL-LP

1 96.97 99.58 99.52 99.28 96.26 99.13 99.69 98.54 98.76 99.13
2 91.09 90.07 96.89 92.11 84.25 94.63 90.63 89.55 97.59 93.01
3 96.08 95.42 99.47 98.62 93.36 96.23 97.61 95.18 96.85 98.71
4 86.32 79.96 78.28 94.72 61.61 64.73 97.30 85.78 85.18 97.41
5 88.57 93.70 97.05 97.14 89.40 84.62 90.00 88.08 98.25 99.59
6 95.27 95.62 98.19 97.18 94.35 95.03 94.49 94.39 99.36 99.18
7 94.03 93.86 97.01 96.84 86.31 86.90 97.33 91.65 94.46 98.66
8 99.83 99.17 99.66 99.66 96.76 99.79 99.00 98.17 99.38 99.73
9 85.74 98.58 99.19 99.95 93.25 90.56 94.42 95.53 91.27 95.61

OA[%] 95.68 97.57 98.01 98.36 93.67 96.13 97.86 96.30 98.01 98.67
AA[%] 93.77 94.00 95.03 97.28 88.39 90.18 95.61 92.99 95.68 97.89
κ 0.923 0.961 0.965 0.971 0.899 0.938 0.965 0.940 0.968 0.979

Stacking all elements of U

U =


(
g>F

)1̃
ξ1 · · ·

(
g>F

)ÑΛ
ξ1

...
. . .

...(
g>F

)1̃
ξM · · ·

(
g>F

)ÑΛ
ξM


= ξ

[
(g>F)1̃> · · · (g>F)ÑΛ

>
]
, (36)

where Λn denotes the nth element of set Λ.
Now consider simplification for V. Each element Vmn of

V can be written as

Vmn = g>F · vec
(
Ã>Ẽ>mnD̃

)
= g>F

(
D̃>Ẽmn ⊗ IP

)
vec

(
Ã>
)

= g>F
(
D̃>m ⊗ IP

)
Ã>n , (37)

where Ãn is the nth row of Ã and D̃m is the mth row of D.
Stacking every element of V, such that

V =


g>F

(
D̃>1 ⊗ IP

)
· · · g>F

(
D̃>1 ⊗ IP

)
...

. . .
...

g>F
(
D̃>M ⊗ IP

)
· · · g>F

(
D̃>M ⊗ IP

)
A>

=


∑N
n=1 D>1n

(
g>F

)
n̄

A>1 · · ·
∑N
n=1 D>1n

(
g>F

)
n̄

A>N
...

. . .
...∑N

n=1 D>Mn

(
g>F

)
n̄

A>1 · · ·
∑N
n=1 D>Mn

(
g>F

)
n̄

A>N


= D

[(
g>F

)>
1̄
. . .
(
g>F

)>
P̄

]
A>, (38)

where p̄(p) = {p, p+ P, . . . , p+ (N − 1)P}. Combining Eq.
(36) and Eq. (38)
∂L
∂D̃

= U−V = ξβ>Λ − D̃βΛÃ> and
∂L
∂D

= ξβ> −DβA>,

(39)

where βΛc = 0 and βΛ = [
(
g>F

)>
1̃
, · · · ,

(
g>F

)>
∼
NΛ

]>. More

generally, we have defined βΛ ∈ RNΛ×P such that vec(β>Λ ) =
Fg.

VIII. APPENDIX B
The gradient for updating the dictionary can be written as

∂L
∂Dmn

= vec

(
∂L
∂A

)>
· vec

(
∂A

∂Dmn

)

= vec

(
∂L
∂A

)>
Λ

· vec
(

∂A

∂Dmn

)
Λ

, (40)

Expand Eq. (31) and combine it with Eq. (40), the desired
gradient is

∂L
∂Dmn

= Umn − Vmn and
∂L
∂D

= U−V, (41)

where

Umn = g>F−1vec
(
E>mn (X−DA)

)
Λ
,

Vmn = g>F−1vec
(
D>EmnA

)
Λ
,

F =
(
IP ⊗D>D + γL⊗ IN

)−1

Λ,Λ
.

Let g has the same definition as that in Section VII. The first
part U of ∂f

∂Dmn
is

Umn = g>Fvec
(
E>mn (X−DA)

)
Λ

=
(
g>F

)
ñ
vec (X−DA)m̃(m,n) (42)

Emn ∈ RM×N is the indicator matrix that the (m,n) element
is 1 and all other elements are zero. m̃ and ñ are defined as
the following index sets,

m̃(m,n) = {m, . . . ,m+ pM, . . . },∀p s.t. n+ pN ∈ Λ

ñ(n) = {n, n+N, . . . , n+ (P − 1)N} ∩ Λ

Eq. (42) can be further simplified by introducing h(n) ∈ RP ,
such that

h(n) =

{(
g>F

)
n+pN

, if n+ pN ∈ ñ(n),∀p
0, otherwise

(43)

Now Eq. (42) can be rewritten as,

Umn = h(n)>ξm, (44)

where ξ>m is the mth row of X−DA. The first part U of the
gradient ∂f

∂D can be obtained by stacking all Umn in Eq. (44)

U =

ξ
>
1 h(1) · · · x>1 h(N)

...
. . .

...
ξ>Mh(1) · · · ξ>Mh(N)


= ξ

[
h(1) · · ·h(N)

]
= ξβ>, (45)
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where we define β =
[
h(1), · · · ,h(N)

]> ∈ RN×P . By
examining the nonzero elements position of h(1), . . . ,h(N),
it is not difficult to find the relation between β and g>F

vec (β)Λ = Fg and vec (β)Λc = 0. (46)

Now consider the second term Vmn of ∂f
∂Dmn

Vmn =
(
g>F

) (
IP ⊗D>Emn

)
Λ,Λ

vec (A)Λ

=
(
g>F

) ([
Dmvec(A)n . . .Dmvec(A)(n+(P−1)N)

]>)
Λ

= Dm

P∑
p=1

An,pβ
p, (47)

where βp is the pth column of β. The differentiation ∂f
∂D can

be derived from Vmn in Eq. (47)

V =


D1

[∑P
p=1 A1,pβ

p, · · · ,
∑P
p=1 AN,pβ

p
]

...

DM

[∑P
p=1 A1,p (Fg)p̂ · · ·

∑P
p=1 AN,p (Fg)p̂

]


= D

[
P∑
p=1

A1,pβ
p · · ·

P∑
p=1

AN,pβ
p

]
= DβA>, (48)

Combining Eq. (45) and Eq. (48), we reach the gradient of
the dictionary

∂L
∂D

= ξβ> −DβA>. (49)

REFERENCES

[1] N. M. Nasrabadi, “Hyperspectral target detection,” IEEE Signal Process.
Mag., vol. 31, no. 1, Jan. 2014.

[2] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Sparse representation
for target detection in hyperspectral imagery,” IEEE Journal of Select.
Topics in Signal Process., vol. 5, no. 3, pp. 629–640, Jun. 2011.

[3] D. Manolakis, “Detection algorithms for hyperspectral imaging applica-
tions: a signal processing perspective,” IEEE Workshop on Adv. in Tech.
for Anal. of Remote. Sens. Data, pp. 378–384, Oct. 2003.

[4] G. Camps-Valls, D. Tuia, L. Bruzzone, and J. Atli, “Advances in hyper-
spectral image classification: Earth monitoring with statistical learning
methods,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 45–54, Jan.
2014.

[5] F. J. Herrmann, M. P. Friedlander, and O. Yilmaz, “Fighting the curse of
dimensionality: compressive sensing in exploration seismology,” IEEE
Signal Process. Mag., vol. 29, no. 3, pp. 88–100, May 2012.

[6] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse unmixing of
hyperspectral data,” IEEE Trans. on Geosci. and Remote Sens., vol. 49,
no. 6, pp. 2014–2039, Jun. 2011.

[7] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote
sensing images with support vector machines,” IEEE Trans. on Geosci.
and Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[8] L. Ma, M. M. Crawford, and J. Tian, “Local manifold learning-based k-
nearest-neighbor for hyperspectral image classification,” IEEE Trans. on
Geosci. and Remote Sens., vol. 48, no. 11, pp. 4099–4109, Nov. 2010.

[9] J. Li, J. Bioucas-Dias, and A. Plaza, “Semisupervised hyperspectral
image segmentation using multinomial logistic regression with active
learning,” IEEE Trans. on Geosci. and Remote Sens., vol. 48, no. 11,
pp. 4085–4098, Nov. 2010.

[10] J. Benediktsson, P. Swain, and O. Ersoy, “Neural network approaches
versus statistical methods in classification of multisource remote sensing
data,” IEEE Trans. on Geosci. and Remote Sens., vol. 28, no. 4, pp. 540–
552, Jul. 1990.

[11] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. on Pattern Anal.
and Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[12] X. Mei and H. Ling, “Robust visual tracking and vehicle classification
via sparse representation,” IEEE Trans. on Pattern Anal. and Mach.
Intell., vol. 33, no. 11, pp. 2259–2272, Nov. 2011.

[13] J. Gemmeke, T. Virtanen, and A. Hurmalainen, “Exemplar-based sparse
representations for noise robust automatic speech recognition,” IEEE
Trans. on Audio, Speech, and Lan. Process., vol. 19, no. 7, pp. 2067–
2080, Sept. 2011.

[14] A. Cheriyadat, “Unsupervised feature learning for aerial scene classifi-
cation,” IEEE Trans. on Geosci. and Remote Sens., vol. 52, no. 1, pp.
439–451, Jan. 2014.

[15] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image
classification using dictionary-based sparse representation,” IEEE Trans.
on Geosci. and Remote Sens., vol. 49, no. 10, pp. 3973–3985, Oct. 2011.

[16] J. Chen and X. Huo, “Theoretical results on sparse representations of
multiple-measurement vectors,” Signal Processing, IEEE Transactions
on, vol. 54, no. 12, pp. 4634–4643, Dec. 2006.

[17] X. Sun, Q. Qu, N. M. Nasrabadi, and T. D. Tran, “Structured priors for
sparse-representation-based hyperspectral image classification,” IEEE
Geosci. and Remote Sens. Letters, vol. 11, no. 7, pp. 1235–1239, Jul.
2014.

[18] J. Tropp, A. Gilbert, and M. Strauss, “Algorithms for simultaneous
sparse approximation: Part I: Greedy pursuit,” Signal Process., vol. 86,
no. 3, pp. 572–588, Mar. 2006.

[19] S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions
to linear inverse problems with multiple measurement vectors,” IEEE
Trans. on Signal Process., vol. 53, no. 7, pp. 2477–2488, Jul. 2005.

[20] S. Kim and E. P. Xing, “Tree-guided group lasso for multi-task regres-
sion with structured sparsity,” in ICML, pp. 543–550, Jun. 2010.

[21] P. Sprechmann, I. Ramirez, G. Sapiro, and Y. Eldar, “C-Hilasso: A
collaborative hierarchical sparse modeling framework,” IEEE Trans. on
Signal Process., vol. 59, no. 9, pp. 4183–4198, Sept. 2011.

[22] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of
subspace structures by low-rank representation,” IEEE Trans. on Pattern
Anal. and Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[23] S. Gao, I. Tsang, and L. Chia, “Laplacian sparse coding, hypergraph
laplacian sparse coding, and applications,” IEEE Trans. on Pattern Anal.
and Mach. Intell., vol. 35, no. 1, pp. 92–104, Jan. 2013.

[24] K. Engan, S. Aase, and J. Hakon Husoy, “Method of optimal directions
for frame design,” in ICASSP, vol. 5, pp. 2443–2446, Mar. 1999.

[25] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. on Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[26] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in ICML, pp. 689–696, Jun. 2009.

[27] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE
Trans. on Pattern Anal. and Mach. Intell., vol. 34, no. 4, pp. 791–804,
Apr. 2012.

[28] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. Bach, “Supervised
dictionary learning,” in NIPS, pp. 1033–1040, Dec. 2008.

[29] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Discrimi-
native learned dictionaries for local image analysis,” in CVPR, pp. 1–8,
Jun. 2008.

[30] I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and clustering
via dictionary learning with structured incoherence and shared features,”
in CVPR, pp. 3501–3508, Jun. 2010.

[31] J. Zhuolin, L. Zhe, and L. Davis, “Label consistent K-SVD: Learning a
discriminative dictionary for recognition,” IEEE Trans. on Pattern Anal.
and Mach. Intell., vol. 35, no. 11, pp. 2651–2664, Nov. 2013.

[32] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary
training for image super-resolution,” IEEE Trans. on Image Process.,
vol. 21, no. 8, pp. 3467–3478, Aug. 2012.

[33] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel op-
timization,” Ann. of Operat. Res., vol. 153, no. 1, pp. 235–256, Apr.
2007.

[34] J. Yang, K. Yu, and T. Huang, “Supervised translation-invariant sparse
coding,” in CVPR, pp. 3517–3524, Jun. 2010.

[35] J. Zheng and Z. Jiang, “Tag taxonomy aware dictionary learning for
region tagging,” in CVPR, pp. 369–376, Jun. 2013.

[36] E. Alpaydin, Introduction to Machine Learning, 2nd ed. The MIT
Press, 2010.

[37] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the Royal Statistical Society, Series B, vol. 67,
pp. 301–320, Dec. 2005.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 14

[38] D. M. Bradley and J. A. Bagnell, “Differentiable sparse coding,” in
NIPS, 2008.

[39] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[40] S. Wright, R. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction
by separable approximation,” IEEE Trans. on Signal Process., vol. 57,
no. 7, pp. 2479–2493, Jul. 2009.

[41] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM Journal on Imag. Sciences,
vol. 2, no. 1, pp. 183–202, Jan. 2009.

[42] U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing,
vol. 17, no. 4, pp. 395–416, Dec. 2007.

[43] J. Mairal, R. Jenatton, R. B. Francis, and R. O. Guillaume, “Network
flow algorithms for structured sparsity,” in NIPS, pp. 1558–1566, Dec.
2010.

[44] G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. Vila-Frances,
and J. Calpe-Maravilla, “Composite kernels for hyperspectral image
classification,” IEEE Geosci. and Remote Sens. Letters, vol. 3, no. 1,
pp. 93–97, Jan 2006.

[45] Y. Chen, N. Nasrabadi, and T. Tran, “Hyperspectral image classification
via kernel sparse representation,” Geoscience and Remote Sensing, IEEE
Transactions on, vol. 51, no. 1, pp. 217–231, Jan. 2013.


	I Introduction
	I-A Sparse Representation for HSI classification
	I-B Dictionary Learning for Sparse Representation
	I-C Contributions

	II Task-driven Dictionary Learning
	III TDDL WITH JOINT SPARSITY PRIOR
	IV TDDL WITH LAPLACIAN SPARSITY PRIOR
	IV-A Sparse Recovery Algorithm
	IV-B Dictionary Update

	V EXPERIMENTs
	V-A Experiment Setup
	V-B Classification on AVIRIS Indian Pine Dataset
	V-C Classification on ROSIS Pavia Urban Data Set

	VI CONCLUSION
	VII Appendix A
	VIII Appendix B
	References



